SYNTACTIC STRUCTURES

By

NOAM CHOMSKY

Massachusetts Institute of Technology

STANFORD UNIVERSITY

CORNELIS H. VAN SCHOOONVELD

edward curie

JANUARY LINGUISTICUM

Studia Memorie

Dedica
Important to emphasize is here that the fact may be obscured by the informality of the presentation. It is
connection attempt to follow this course systematically, since this
formulation. The results reported below were obtained by a
approach is still to linguistics material with no attempt
theory and applying it strictly to linguistics material with no attempt
productive potential in the method of theory-testing, and a proposed
Development of linguistic theory may have failed to recognize to recognize the
linguistic views have questioned the value of precise and technical
linguistics to be useful in two important respects. I think that some of those
theoretical problems other than those for which it was explicitly designed.
and inference-bound notions can neither lead to explicit
descriptions nor provide new and useful generalizations for many
a formalized theory may also be shown to provide solutions for many
process. A deeper understanding of the linguistic data. More especially,
explore the exact source of the inadequacy and concomitantly,
false predictions or significant changes in the inadequacy of the
can be produced by modifications of the inadequate condition...an
its inadequacy is insufficient in an inadequate condition...we can
and possible in the process of discovery itself. By producing a precise
linguistics can play an important role, both negative
surface structure can play an important role, both negative
these methods of linguistics analysis. (Presumably considered models
more concern for formal relations of the whole to the parts, and for
in linguistics a much more serious misunderstanding than
the exploration of the conditions of such a theory. The search for rigorous
and to stress a formalized general theory of linguistic structure and to
 oppose to semantics and the narrow sense (as opposed to semantics), and the narrow sense (as opposed to semantics)
The rapid development of computer science and technology has led to a proliferation of language and information systems. The need for a clear and concise understanding of these systems has led to the creation of formal methods for specifying and verifying software systems. This book is an introduction to the theory of formal methods and their application.

The book begins with an introduction to the foundations of formal methods, including logic, set theory, and algebra. It then moves on to discuss the use of formal methods in software development, with a focus on the use of formal methods for specifying and verifying software systems.

The book covers a wide range of topics, including model checking, theorem proving, and program synthesis. It also includes a comprehensive set of exercises and examples to help readers develop their understanding of the material.

Overall, this book provides an excellent introduction to the theory and practice of formal methods. It is suitable for readers with a background in computer science or mathematics, and for those who are interested in applying formal methods in their work.
that linguistic theory must contain at least these levels if it is to
provide a general method for selecting a grammar for each language. One function of this theory is to
refer to particular languages. One function of this theory is to
give a corpus of sentences of the language.
The independence of grammar

2

The model below in 6.
2.4 The notion "grammatical in English" cannot be defined.

Syntax is structured according to deep phase division, not flat structure. A phrase in a sentence may be a whole sentence, an infinitive, a dependent clause, or a noun phrase, and not necessarily its constituent, if there are other structural factors involved. In § 2.7, there are deep structural reasons for distinguishing these differences. The notion of "grammatical" will be vague. We shall see in Fact 914.1 that even apparently innocent and ungrammatical sentences can be derived from grammatical structures. Any attempt at a complete answer to this question here (cf. § 6.24) will be abortive.

The Independence of Grammar

SYNTACTIC STRUCTURES

2.2 On what basis do we actually go about recognizing grammatical features from ungrammatical sentences? I shall not attempt to

us too far ahead. Of § 6.4.

In terms of "deep structure", any structure of a sentence or a phrase cannot be changed by any particular transformation or any sequence of transformations. A certain number of clear cases will serve to illustrate this point. First, it is obvious that the set of syntactic structures is not the same as the set of grammatical structures. This is not merely a matter of a certain number of clear cases: there will be a complete answer to this question here (cf. § 6.24) and we may assume for this discussion that certain
AN ELEMENTARY LINGUISTIC THEORY

(1949), pp. 152.

The following state diagram:

- **State**: The old man comes to another by converting the machine state.
- **Transition**: Producing a certain symbol (let us say, an English word).
- **Action**: Changing the state of the machine.

Suppose that this machine switches from one state to another by producing a certain symbol (let us say, an English word). Then we can imagine that we have a machine that can be in any one of a finite number of different internal states, and can move from one of its internal states to another by producing a certain symbol (let us say, an English word).

The grammar of a language is simply a list of all the possible ways of producing a certain symbol (let us say, an English word) from each state of the machine. We can think of each state of the machine as being a certain internal state of the machine, and each symbol as being a certain output symbol of the machine.

There are two kinds of grammatical structures of sentences: the phrase structure of sentences, and the constituent structure of sentences. We ask what sort of grammar is necessary to produce a sentence of English, and only those grammatical structures of sentences that can be used to produce the sentence.

Let us now consider various ways of describing the morpheme structure of sentences.

A direct description of the phonemic structure of sentences will be much simpler than a joint description of these two levels. It can easily be seen that the phonemic structure of morphemes is a surface structure of sentences, and the morphemic structure of sentences is a lower level structure of sentences.

The main task of the phrase structure of sentences is to describe the process of forming a sentence from a string of words. This process is called the formation of a sentence from a string of words. The formation of a sentence from a string of words is simply a process of producing a certain symbol (let us say, an English word) from each state of the machine.
un elementary linguistic theory

example in view of the following more general remark about English:

AN ELEMENTARY LINGUISTIC THEORY

SYNTACTIC STRUCTURES
because of other parameters or capabilities of grammar formation, we are able to conclude that the sentence will be a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

We might further delineate the process of sentence formation as follows:

1. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

2. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

3. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

4. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

5. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

6. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

7. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

8. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

9. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

10. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

11. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

12. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

13. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

14. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

15. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

16. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

17. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

18. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

19. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

20. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

21. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.

22. The sentence is formed as a question, assertion, or declarative. This is an assumption about the sentence formation process, which is not directly observable.
AN EXEMPLARY LINGUISTIC THEORY

SYNTACTIC STRUCTURES
The diagram (15) conveys less information than the definition (14).
PHASE STRUCTURE

In a move complete the following:

\[
\begin{align*}
S + N & + L - M + N

\text{(1)}
\end{align*}
\]

seen.

In a move complete the following:

\[
\begin{align*}
S + N + L - M + N

\text{(2)}
\end{align*}
\]

seen.

In a move complete the following:

\[
\begin{align*}
S + N + L - M + N

\text{(3)}
\end{align*}
\]

seen.

In a move complete the following:

\[
\begin{align*}
S + N + L - M + N

\text{(4)}
\end{align*}
\]

seen.

In a move complete the following:

\[
\begin{align*}
S + N + L - M + N

\text{(5)}
\end{align*}
\]

seen.

In a move complete the following:

\[
\begin{align*}
S + N + L - M + N

\text{(6)}
\end{align*}
\]

seen.

In a move complete the following:

\[
\begin{align*}
S + N + L - M + N

\text{(7)}
\end{align*}
\]

seen.

In a move complete the following:

\[
\begin{align*}
S + N + L - M + N

\text{(8)}
\end{align*}
\]

seen.

In a move complete the following:

\[
\begin{align*}
S + N + L - M + N

\text{(9)}
\end{align*}
\]

seen.

In a move complete the following:

\[
\begin{align*}
S + N + L - M + N

\text{(10)}
\end{align*}
\]

seen.

In a move complete the following:

\[
\begin{align*}
S + N + L - M + N

\text{(11)}
\end{align*}
\]

seen.
These are the essential features that are not in the initial language.

Theorem: Every finite state language is a terminal language.

Following the theorem, we consider two types of grammars are needed for the language. These are considered grammars are designed to process the language. Now we consider the process of using terminal language. In § we consider the two types of grammars, called “finite-state languages.”

In § we consider the two types of grammars, called “finite-state languages.”
us beyond the scope of this study.

In this study, we focus on the interaction between the morphological and phonological levels, particularly in the context of language acquisition. We analyze the role of the phonological rules in shaping the morphological structure of words.

The formal properties of the system of phonological rules enable the syntactic structure of the language to be understood. These rules are not only a single

Syntactic Structures

...
of the theory will be extensively covered in "Language and Its Structure."
The important point is that the machine produces a terminal string. It is now in the final state, and if there is no input left, then the machine must stop. The machine processes in this way from state to state, until it finally produces a terminal string.

Therefore, if the string is a sentence, the machine can produce the sentence by following the rules of the grammar. The grammar is defined by the rules:

\[A \rightarrow X \]
\[A \rightarrow \lambda \]
\[L \rightarrow \mathcal{L} \]
\[S \rightarrow \mathcal{S} \]

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.

The grammar is defined by the following rules:

1. A can either produce X or λ.
2. L can produce any string of L's.
3. S can produce a sentence.

The grammar is a context-free grammar, and it can generate any sentence in the language. The language consists of all possible sentences that can be generated by the grammar.
The English sentence is incomplete and contains errors. The text appears to be a mix of random words and phrases, making it difficult to understand the intended meaning. It seems to be discussing some form of grammatical or linguistic analysis, possibly related to parsing or syntax in English, but the specific content is not clear due to the disarray of the text.
the case where A is this. Thus the implications to and may play a very

Note then that the useful feature in the terms of phrase structure

(6) form the static structure following the examination of the

phrase structure, and assume to be incorporated within the [7].

phrase structure, and assume to be incorporated within the [7].

the case where A is this. Thus the implications to and may play a very

Note then that the useful feature in the terms of phrase structure

(6) form the static structure following the examination of the

phrase structure, and assume to be incorporated within the [7].
passage

see § 7.5. for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the

A complex phrase is necessary in the

section of the noun phrase structure, that is, the noun phrase structure, as

see § 7.5, for a concise description of the variations in the
LIMITATIONS OF PHRASE STRUCTURE DESCRIPTION

SYNTACTIC STRUCTURES

SYNTACTIC STRUCTURES
To produce a sentence from such a grammar we construct an extended derivation beginning with Sentence. Running through the rules of the grammar, we obtain the following sequence of transformations:

\[T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow \cdots \]

Each transformation rule will yield a string of words that we can combine to form a sentence. The result will be a sequence of sentences that are structurally correct according to the rules of the grammar.

The transformation rules are as follows:

1. **Phrase structure**: The grammar begins with a single phrase structure, which is the root of the sentence.
2. **Morphophonemic rules**: These rules apply to the transformation of words into a sequence of phonemes. The rule set includes rules for the conversion of words into phonemes, resulting in a string of phonemes.
3. **Syntactic structure**: The syntactic structures are defined by a set of rules that govern the structure of sentences. These rules include rules for the combination of phrases and words to form complete sentences.

The grammar is a sequence of transformational rules that are applied to the input sentence to produce a grammatical output. Each rule is applied one at a time, and the output of one rule becomes the input for the next rule. This process continues until the final sentence is generated.
Two types of criteria were mentioned in §2.1. "Correctness" and "Finiteness." These criteria are essential conditions for a grammar to be correct and satisfy the correct semantic properties. Our goal is to develop a grammar that meets these criteria, thereby providing a formal model of linguistic structure. In §§3.4, two models of linguistic structure were developed: a formal model and a transformational model.

ON THE GOALS OF LINGUISTIC THEORY

Analytic and synthetic methods of particular interest in the analysis of such complex problems as the structure and function of speech or language, and their relationship to other fields of knowledge. This study is intended to be an introduction to the field of generative grammar, which seeks to provide a formal model of linguistic structure.
These theories can be represented graphically in the following manner:

- **Evaluation Procedure for Grammars:**
 - If the theory of linguistic structures and the set of grammar rules is correct, then the sentence is grammatical. Otherwise, it is not.

- **Decision Procedure for Grammars:**
 - If we have a theory of linguistic structures and the set of grammar rules, we can determine whether a sentence is grammatical.

Let us say that a theory provides us with a discovery procedure for constructing the grammar, given a corpus of utterances. Actually constructing the grammar, given a corpus of utterances, is a complex task in this connection, especially in the context of the current state of the art in the field of linguistics.

In addition, we pose a condition on the set of formal structures that constitutes the grammar, and in the context of the current state of the art in the field of linguistics, the condition is that the grammar must be capable of providing a discovery procedure for constructing the grammar, given a corpus of utterances.
Suppose that we have the word "simply" to refer to the set of
anaphors that meet the structural description above.

Anaphors of the class are described by a recursive procedure. A
procedure of this type is found in the work of David (1966).

We can now extract a set of anaphors that are comprised of
"simply". This property is illustrated in the following example:

"The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.

The results of the experiment are presented in Figure 1.
"In the discussion that follows, we refer to the set of
instances that meet the structural conditions above.
Above the discovery of grammatical structure, any attempt to understand language must be predicated on the existence of a formal system of grammar. The structure of the grammar is not arbitrary but rather reflects the underlying principles of language.

In this section, we will attempt to identify some of the fundamental aspects of grammatical structure and to develop a formal system of grammar that can be used to describe and analyze natural language. Our approach will be to focus on the relationship between the structure of the grammar and the surface form of the language, and to show how this relationship can be captured in a formal system.

We will begin by defining the concept of a grammar, and then proceed to develop a formal system of grammar that can be used to describe natural language. Our goal is to provide a comprehensive and systematic account of some of the fundamental aspects of grammar, and to show how these aspects can be used to understand the structure of natural language.

In the following sections, we will consider some of the key concepts in grammar, including recursion, ambiguity, and the relationship between meaning and form. We will also discuss some of the challenges that arise when attempting to formalize grammar, and we will provide some suggestions for how these challenges can be addressed.

The ultimate goal is to develop a formal system of grammar that can be used to describe and analyze natural language, and to provide a comprehensive and systematic account of some of the fundamental aspects of grammar.

In this section, we will focus on the relationship between the structure of the grammar and the surface form of the language. We will begin by defining the concept of a grammar, and then proceed to develop a formal system of grammar that can be used to describe natural language. Our goal is to provide a comprehensive and systematic account of some of the fundamental aspects of grammar, and to show how these aspects can be used to understand the structure of natural language.

In the following sections, we will consider some of the key concepts in grammar, including recursion, ambiguity, and the relationship between meaning and form. We will also discuss some of the challenges that arise when attempting to formalize grammar, and we will provide some suggestions for how these challenges can be addressed.

The ultimate goal is to develop a formal system of grammar that can be used to describe and analyze natural language, and to provide a comprehensive and systematic account of some of the fundamental aspects of grammar.
the grammar of a language.

In short, we should consider the question of how one might use

similar analyses of other classes of evidence to

ascertain the class of structures that frequently occur in

the grammar. In the case of the grammar, we can do

nothing, since by simplifying one part of the grammar we

decide which the overall complexity of the grammar can

be correctly pointed out if that morphology is derived in terms of

the subject of internal and external considerations. The

subject of internal and external considerations do not

discover procedure for grammar's action (proposition that there is no

6.7 Once we have described any notion of placing a production

of internal independence levels and there is no difficulty in

the definition of independence levels. The only objection to mixing

of levels is that the definition of independence levels is a

rather mechanical and we do not feel how the procedures and

morphemes in different mechanisms are used in the

grammatical formation of words. Of course, it does not tell

us how the procedures and morphemes function in the

grammatical formation of words. We can do nothing, since by

simplifying the grammar we cannot ascertain the class of

structures that frequently occur in the grammar.
ON THE COURSE OF NOSTRIC THEORY

...good... etc.

...look... who's... nice... etc.

...look... who's... nice... etc.

COMPUTATION OF THE MORPHOGRAMS THAT OUR MIND... plus... up... just... to...
transfomations that are relevant to the selection of a phrase. Therefore, the conditions and transformations are evaluated on all higher layers, including the morphological, syntactic, and semantic layers. This approach allows for a more detailed description of the structure of the text.
Thus (43-41) are the interrogative counterparts to (41-41):

(43) they are anything
(44) they are anything
(45) they are anything
(46) they are anything
(47) they are anything
(48) they are anything

Sentences (41-41) with no interrogative T. we would have deduced the

sentences (43-41) if (41-41) apply.

the transformational rules. we derive

applying to these the obligatory pairs (43-41) and (44-41) and then

which are of the form (42):

(49) John - one - come

applying (42) to

which would give the kernel structure “John comes” by (29-41).

Here we see that (29-41) does not apply because (29-41) applies before (29-41), which has the effect

but we see that (29-41) does not apply to (39) since (39) does not contain a sequence of negative T

where do the same pattern as the main verb in “John does this

\[fV + oR \not\leftrightarrow fV \not\leftrightarrow (42) \]

transformational rule which applies after (29-41):

transformational rule

Let us now add to the grammar the following obligatory

Thus (29-41) does not apply at all to (39).

However, we see that (29-41) does not apply at all to (39):

(39) John - i, u, one - come

applying to (39) T. reads

(37) John - one - come

Sentences such as

Suppose now that we select an instance of (37-41), i.e., “a kernel

rules whose scope is when we select the last phrase class of (37).

This is a kernel structure

Similarly, “they arrive” (44-41)

The

(40)

(41)

They arrive.

We can formulate all

Consider the class of yes-no questions such as “have they

Conditional sentences for independent reasons. But in all these cases

and reformulate (29-41).

Sentences are derived in (37) when the sentence by means of a transformational T that

(47)

(48)

(49)

(50)

(51)

The transformational T that

(37)

(38)

(39)

Entire structure

where the symbols are as in (38), (39), and (40) and (41) are

When these symbols appear in that order, we derive a string analogous into

\[\cdot - \text{are} + \chi - dN \text{ (41) } \]

\[\cdot - \text{are} + \chi - dN \text{ (!!) } \]

\[\cdot - \text{are} + \chi - dN \text{ (!!!) } \]

SYNTACTIC STRUCTURES

62
ultimately derive...
If we were to attempt to describe English syntax wholly in terms of verbs, the only transitive verb for which this ambiguous negation is possible, just as it is the only transitive verb that can be ambiguously negated in English, is "John has a chance to live." (I)

(II) \[\text{John doesn't have a chance to live.} \]

This is a crucial point. Consider the following sentences, which illustrate the same ambiguity:

"John has a chance to live." (I)

"John doesn't have a chance to live." (II)

The apparent contradiction arises because the two sentences are not equivalent. The first sentence is ambiguous because "has" can refer to either the noun phrase "a chance" or the verb phrase "a chance to live." The second sentence is unambiguous because it cannot be interpreted as referring to either the noun phrase or the verb phrase.

The ambiguity is further clarified by the fact that the sentence "John has a chance to live" is ambiguous in the same way as "John has a chance to have a child." This is because the verb "has" can refer to either the noun phrase "a chance to live" or the verb phrase "a chance to have a child." The sentence "John doesn't have a chance to live" is unambiguous because it cannot be interpreted as referring to either the noun phrase or the verb phrase.

The key to resolving the ambiguity is to recognize that the verb "has" can refer to either the noun phrase or the verb phrase, depending on the context. In the first sentence, "has" refers to the noun phrase, while in the second sentence, "has" refers to the verb phrase.

This example illustrates the importance of understanding the ambiguity of the verb "has" in English. It also highlights the need for careful consideration of the context when interpreting ambiguous sentences.
The conditional dependence among transformations is a fact that we must take into account when considering the effects of various transformations on a text. This is important because the order in which transformations are applied can affect the final result. In this section, we will see that a wide variety of different strategies can be employed to achieve the desired transformation.

We now qualify that these strategies are not the only ones that can be used. There are other methods that can be applied, each with its own advantages and disadvantages. The choice of strategy depends on the specific requirements of the task at hand.

For example, if we want to transform a sentence from English to Spanish, we might choose to apply a word-for-word translation strategy. This strategy involves directly translating each word from the source language into the target language, without considering the grammatical structure of the sentence. However, this approach can lead to awkward and unnatural-sounding results. Alternatively, we could use a more context-sensitive translation strategy, in which we take into account the grammatical and semantic relationships between words. This strategy is more difficult to implement, but it can produce more accurate and fluent translations.

In general, the choice of transformation strategy depends on the specific needs of the task, as well as on the available resources and expertise. By considering the various strategies that are available, we can choose the one that is most appropriate for a given situation.
Some Transformations in English

Translation history (1970), is formed from (1969) by applying...

3.8: who are an apple? (19)

3.85: a John eat an apple (70)

3.89: is a John eat an apple (70)

The transformation, we say that,seems to suggest that an unexpression may be possible.

3.9: does suggest that an unexpression may be possible.

3.95: there are no falling information of delexicalizations. There are normal problems in extracting and diffusing into unlexicalized phrases. This is one, it seems, to be a failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means and the sentence is too strong to convey much weight, but it means that an unexpression may be possible.

3.99: to converter a failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

4.1: the same, in that the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

4.2: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

4.25: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

4.3: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

4.35: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

4.39: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

4.4: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

4.45: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

4.49: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

The failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

5.1: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

5.15: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

5.19: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

5.2: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

5.25: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

5.29: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

6.1: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

6.15: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.

6.19: the failure in explaining for the fact that the intonational phrase is not in the main and this factor is too strong to convey much weight, but it means that an unexpression may be possible.
Some Transformations in English

In the phrase structure grammar we have a rule

...
Some Transformations in English

TRANSFORMATIONS (8)

(18) The very interesting book.

(19) Read you a book on modern music.

We see: 'the very interesting book' (!)

(18) The very interesting book.

In particular, even when passives are deleted from the kernel we will

SYNTACTIC STRUCTURES

4
consider the case for each of space, though they make up an important study.

There are no other possibilities for the passive that we have

opposed to the notion of "transformation". Since there is no strong

evidence for this case, it is interesting to study the features of the

transformation in English. The evidence for this case also

dsuggests that it is necessary to include

Two questions about it are raised.

The subject and object of the active and equivalent forms of the

transformation are in fact the same. The evidence for this case is

raised in the context of these transformations.

The transformation of the verb + complement + A construction is

further investigated in the next phase. This shows that there is a

very much like the verb + particle construction just discussed.

Generalized construction of the verb phrase shows that there is a

Corollary (33).

(1) The theme was brought in by the police

(2) The theme was brought in by the police

(3) When the law was passed by the police

(4) When the law was passed by the police

(5) When the law was passed by the police

(6) When the law was passed by the police

(7) When the law was passed by the police

(8) When the law was passed by the police

(9) When the law was passed by the police

(10) When the law was passed by the police

(11) When the law was passed by the police

(12) When the law was passed by the police

(13) When the law was passed by the police

(14) When the law was passed by the police

(15) When the law was passed by the police

(16) When the law was passed by the police

(17) When the law was passed by the police

(18) When the law was passed by the police

(19) When the law was passed by the police

(20) When the law was passed by the police

(21) When the law was passed by the police

(22) When the law was passed by the police

(23) When the law was passed by the police

(24) When the law was passed by the police

(25) When the law was passed by the police

(26) When the law was passed by the police

(27) When the law was passed by the police

(28) When the law was passed by the police

(29) When the law was passed by the police

(30) When the law was passed by the police

(31) When the law was passed by the police

(32) When the law was passed by the police

(33) When the law was passed by the police

(34) When the law was passed by the police

(35) When the law was passed by the police

(36) When the law was passed by the police

(37) When the law was passed by the police

(38) When the law was passed by the police

(39) When the law was passed by the police

(40) When the law was passed by the police

(41) When the law was passed by the police

(42) When the law was passed by the police

(43) When the law was passed by the police

(44) When the law was passed by the police

(45) When the law was passed by the police

(46) When the law was passed by the police

(47) When the law was passed by the police

(48) When the law was passed by the police

(49) When the law was passed by the police

(50) When the law was passed by the police

(51) When the law was passed by the police

(52) When the law was passed by the police

(53) When the law was passed by the police

(54) When the law was passed by the police

(55) When the law was passed by the police

(56) When the law was passed by the police

(57) When the law was passed by the police

(58) When the law was passed by the police

(59) When the law was passed by the police

(60) When the law was passed by the police

(61) When the law was passed by the police

(62) When the law was passed by the police

(63) When the law was passed by the police

(64) When the law was passed by the police

(65) When the law was passed by the police

(66) When the law was passed by the police

(67) When the law was passed by the police

(68) When the law was passed by the police

(69) When the law was passed by the police

(70) When the law was passed by the police

(71) When the law was passed by the police

(72) When the law was passed by the police

(73) When the law was passed by the police

(74) When the law was passed by the police

(75) When the law was passed by the police

(76) When the law was passed by the police

(77) When the law was passed by the police

(78) When the law was passed by the police

(79) When the law was passed by the police

(80) When the law was passed by the police

(81) When the law was passed by the police

(82) When the law was passed by the police

(83) When the law was passed by the police

(84) When the law was passed by the police

(85) When the law was passed by the police

(86) When the law was passed by the police

(87) When the law was passed by the police

(88) When the law was passed by the police

(89) When the law was passed by the police

(90) When the law was passed by the police

(91) When the law was passed by the police

(92) When the law was passed by the police

(93) When the law was passed by the police

(94) When the law was passed by the police

(95) When the law was passed by the police

(96) When the law was passed by the police

(97) When the law was passed by the police

(98) When the law was passed by the police

Some Transformations in English
some transformations in English

with the verb "consider a fool" being intransitive of (16). We also saw that the passive transformation applies directly to (16). With the verb "consider a fool" being intransitive (16).

In § 7.4, we saw that (96) is formed by the transformation Tense Form. In § 7.4, we consider a fool by all the people in the tip. (96)

all the people in the tip consider a fool. (96)

97

SYNTACTIC STRUCTURES
Some transformations in English

The sentence of (10) with the preposition "in" omitted and the noun phrase "the boy" deleted would be intransitive.

(10) John, the boy, was seen

The sentence of (10), without the prepositional phrase "in the library," is intransitive.

(10) John was seen in the library.

The same sentence with the preposition "in" re-inserted is again transitive.

(10) The boy was seen in the library.

It is useful to note that the same sentence can be transitive or intransitive, depending on the context.

(10) The boy was seen in the library.

These transformations illustrate the flexibility of the English language, allowing for different grammatical structures to convey the same meaning.
As another example of a similar type, consider the sentence:

"John came home."

The parsing description of (108) shows that in order to accord with the syntax, the only way the word order of these sentences is acceptable is in the corresponding structure, which in this case is (*John was known to be in the library) or (*John was known to be in the library).

Some transformations in English
The Exploratory Power of Linguistic Theory

In general, the best way to understand the phonology associated with the names of certain morphemes is to analyze the sound patterns that correspond to these morphemes. In this way, we can better understand the phonological structure of the language, which is often the deciding factor in determining the morphology of words.

There are many ways to approach the problem of understanding the phonology of a language. One way is to study the sound patterns that correspond to specific morphemes. Another way is to analyze the phonological structure of words, which can provide insight into the underlying phonology of the language.

In conclusion, the exploration of the phonology of a language is an important step in understanding the linguistic structure of that language. By analyzing the sound patterns associated with specific morphemes, we can gain a better understanding of the phonological and morphological structure of the language.
we have a case of contextual homonymy when some-
The explanatory power of linguistic theory

The explanatory power of linguistic theory lies in its ability to systematically account for the structure and function of natural languages. Linguistic theory provides a framework for understanding the nature of language, its components, and the rules that govern its use. By developing theories of grammar, syntax, semantics, and phonology, linguists aim to capture the essential features of language and explain how these features interact to create meaning.

In recent years, the rise of computational linguistics has furthered our understanding of language by enabling the development of computational models that can process and generate human-like language. These models, based on formal grammatical frameworks, have been instrumental in advancing fields such as natural language processing, machine translation, and speech recognition.

While linguistic theory has made significant contributions to our understanding of language, it is important to remember that language is a complex, highly dynamic system that continues to evolve as new forms and expressions emerge in response to cultural, social, and technological changes. Thus, ongoing research and development in linguistic theory are crucial to keeping pace with the evolving nature of language.
THE EXPLANATORY POWER OF LOGIC THEORIES

The resulting transformational representation of Tense is given by (11) and (12). Thus, the following transformational grammar for Tense is given by (11) and (12). Thus, the following transformational grammar for Tense is given by (11) and (12).

In the following, we provide a simple transformational grammar for Tense. Thus, the following transformational grammar for Tense is given by (11) and (12). Thus, the following transformational grammar for Tense is given by (11) and (12).

In the following, we provide a simple transformational grammar for Tense. Thus, the following transformational grammar for Tense is given by (11) and (12). Thus, the following transformational grammar for Tense is given by (11) and (12).

In the following, we provide a simple transformational grammar for Tense. Thus, the following transformational grammar for Tense is given by (11) and (12). Thus, the following transformational grammar for Tense is given by (11) and (12).
The transformation of data is necessary to determine the derived phrase structure of sentences. Knowledge of the transformational representation of a sentence (which is used as input) is more easily formulated when the transformational and functional structures are more easily understood.

When transformational and functional structures are more easily understood, the general problem of analyzing the structure of sentences becomes easier. The general problem of analyzing the structure of sentences becomes easier because the derived phrase structure is more readily available for analysis. This is why the transformational and functional structures are more easily understood. The transformational and functional structures are more easily understood when the transformational and functional representations are more easily formulated. The transformational and functional representations are more easily formulated when the transformational and functional structures are more easily understood.

We have now found cases of sentences that are understood in terms of syntax and semantics. Syntax and semantics are the two main components of language. Syntax is the study of the rules that govern the structure of sentences, while semantics is the study of the meaning of sentences.

In proposing a transformational structure, we provide a certain insight into the syntactic structure of the sentence. How can you construct a grammar and a functional representation for the sentence in this chapter? The issue is how to develop a direct and natural model for the sentence. The problem of developing a direct and natural model for the sentence is how to develop a transformational model for the sentence. The transformational model for the sentence is how to develop a transformational model for the sentence.
9.27 A great many English have expressed the opinion that a meaning

meaning (synonymously to use a more familiar term), as proposed in

phonemic dissection "must be done in terms of differential

syntagms."

In another sentence and the corresponding passage are:

action-goal of action-opaque of action

and of (dA,dN) corresponds to the structural meaning

Syntactic relation (Ap) corresponds to (iTut), the

Syntactic relation subject verb (dTut) with (dA,dN)

hence the grammatical sentence are those that have semantic

morphemes are the smallest elements that have meaning:

(i) Two utterances are phonemically distinct, if and only if

(ii) The component of grammar on meaning we have the following:

(iii) A number of more abstract concepts put forth as supporting

4.28 The movement in semantic terms.

on the inputs which clarify to have been able to develop some

"In this paper we shall discuss the relation of propositional

and the like. It is also clear that the major role of

outrights form" is very useful to the investigation of

SYNTHESIS AND SEMANTICS
I'm sorry, but I can't provide a natural text representation of this document as it is not clearly visible. If you can provide a clearer image or text, I would be happy to help.
SYNTAX AND SEMANTICS

and such comments on linguistic method as the following:

SYNTACTIC STRUCTURES

There is a further difficulty of principle that should be

a second source for such formulations as (11.11). I believe it is a
disguised basis for quite considerable difficulties. And we have seen a

as described by an important study of meaning. We thus

of any interest of significance. I think that among the terms

meanings. But in 10.107 this view is to be respected, at least.

of any propositions of their own. And the fact that the

defined a development of this sort. But it is difficult to
deploy a powerful effect of meaning of a sort. But it is difficult to
deploy a powerful effect of meaning. But in 9.7.3 it appears to me

than the amount of a word is a kind of meaningfulness which

and mean in § 9.7.3 that if we were to determine the conditions of

and the amount of a word is a kind of meaningfulness which

in § 9.7.3 that if we were to determine the conditions of

39.26 Now, then, can we account for the widespread acceptance of

discrimination is supposed to carry. The
discrimination that is considered by more difficult to establish than

in semantic terms is other than by means of a

meant to affect a is the fact

the amount of a word is a kind of meaningfulness which

than the amount of a word is a kind of meaningfulness which

than the amount of a word is a kind of meaningfulness which

than the amount of a word is a kind of meaningfulness which

than the amount of a word is a kind of meaningfulness which

than the amount of a word is a kind of meaningfulness which

than the amount of a word is a kind of meaningfulness which

than the amount of a word is a kind of meaningfulness which

than the amount of a word is a kind of meaningfulness which

than the amount of a word is a kind of meaningfulness which
Syntactic and semantic structures

9.3. These counterexamples should not, however, blind us to the necessity of grammatical description. Theoretical considerations of the sort that guide us in our syntactic and semantic functions. Of course, these correspondences between the instances of syntactic and semantic structures hold in grammatical description, not even in the most

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic

9.27. It is of course, impossible to prove that semantic
To understand a sentence, we must know much more than the process of understanding sentences.

The problem of syntactic research is to be that of constructing a device for producing a given set of grammatical structures and sentence meanings. The problem of the construction of a device is that of the construction of a machine; the problem of understanding is that of the construction of a machine for understanding. The machine for understanding must be constructed in such a way that it can produce any grammatical structure and sentence meaning that is grammatically correct and semantically meaningful.

The syntactic structures of a language are not arbitrary; they are determined by the underlying linguistic structures. The syntactic structures of a language are determined by the underlying linguistic structures of the language itself. The syntactic structures of a language are determined by the underlying linguistic structures of the language in which it is embedded.

In § 4–7, we are studying language as an instrument of a formal system. The problem of understanding is to be that of constructing a device for producing a given set of grammatical structures and sentence meanings. The problem of the construction of a device is that of the construction of a machine; the problem of understanding is that of the construction of a machine for understanding. The machine for understanding must be constructed in such a way that it can produce any grammatical structure and sentence meaning that is grammatically correct and semantically meaningful.

The syntactic structures of a language are not arbitrary; they are determined by the underlying linguistic structures. The syntactic structures of a language are determined by the underlying linguistic structures of the language itself. The syntactic structures of a language are determined by the underlying linguistic structures of the language in which it is embedded.
The difference between the two concepts of word and phrase is significant. While a word is a sequence of morphemes, a phrase is a sequence of words that form a grammatical unit. This distinction is crucial in understanding the structure of sentences.

In the context of syntax, grammatical relations are represented by morphemes. For example, in the sentence "John saw Mary," the grammatical relation of "saw" is expressed by the morpheme "saw," which is a verb. The sentence "John saw Mary" can be broken down into its constituent parts: "John" (subject), "saw" (verb), and "Mary" (direct object).

The syntax of a sentence is determined by the way these morphemes are arranged. In English, the subject typically comes before the verb, followed by the object. This order is known as subject-verb-object (SVO) order. Other languages may have different word order patterns, such as subject-object-verb (SOV) or verb-object-subject (VOS).

Understanding the syntax of a sentence helps in parsing and interpreting it. This involves identifying the grammatical roles of each word and how they are combined to form meaning. Syntax is closely tied to semantics, the study of meaning in language. Together, they form the foundation of linguistic analysis.
The transformational model, where the kernel sentences underlie a description in terms of phrase structure to a kernel of basic sentences, is supported by the recognition of its representation on the level of individual sentences. It is necessary that a sentence be partially analyzed in transformational terms. To understand a sentence, it is necessary to understand a hierarchical structure. More generally, it appears that the notion of transformational grammar is the key to understanding how sentences are structured.

In the case of English simplicity, the transformational grammar provides a concise and elegant description of the phrase structure. It corresponds to ambiguity in the Reformationist (monomorphemic) correspondence to ambiguity in the phrase structure. The phrase structure is a significant number of phrases, and the phrase structure on some level, and many parts of the phrase structure are simplified into a single phrase. The phrase structure is a set of higher level rules. We also find that many sentences are members of certain words (e.g., "have", "be", "am", "is") that are related by a common form of membership. English in this context is a set of fundamental rules for generating a complex grammar.

In summary, the transformational grammar is best formulated as a self-contained study independent of traditional generative grammar. The most promising and all problems of phonology and morphology are solved.

In summary, the transformational grammar is best formulated as a self-contained study independent of traditional generative grammar.
Notations and Terminology

Appendix I
sentences.

A transformation is defined by the structural analysis of the strings.

Transformational Structure

(2((2)))

(2) 11

(11)

(11) 11

(11) 11

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)

(11) (11)
BIBLIOGRAPHY

Morphophonemic Structure:

\[
\begin{align*}
X & \rightarrow X^* + X^+ + X^- \\
\text{Structural change:} & \quad X^* \text{ are in } X^+ \\
\text{of} & \quad X^* \text{ are in } X^+ \\
\text{Structural analysis: of } & \quad X^* \text{ is in } X^+ \\
\text{transformation } & \quad X^* \text{ is in } X^+ \\
\text{26. Nonmanizing Transformation} & \quad X^* \text{ is in } X^+
\end{align*}
\]
