Sluicing under Code Switching: Merger and Sprouting differ, the question is why

Sluicing is a form of ellipsis that strands a wh-word under some identity between an antecedent phrase and an ellipsis site. But whether this identity condition is a semantic or syntactic phenomenon remains unresolved. Ross (1969)’s case matching observations are perhaps the most cross-linguistically robust argument in favor of a syntactic theory of sluicing. Language after language displays morphological case matching effects between a CORRELATE in the antecedent and the remnant wh-element left from an elided interrogative phrase. Put simply, the case on the remnant must match the case shown on the CORRELATE, as seen in (1) from German:

(1) Hans hat JEMANDEM₃₄ dat gedroht, aber ich weiss nicht wem₃₄ dat <er gedroht hat>.
 Hans has someone threatened but I know not who he threatened has
 ‘Hans threatened someone, but I don’t know who he threatened.’

The task is then to establish just what the identity condition is on sluicing. Merchant (2001, 2013) proposes an identity condition that requires mutual entailment of the antecedent and the ellipsis site: a TP can be elided only if it entails and is entailed by an antecedent TP (modulo Focus-closure). Here the identity condition is primarily semantic. Chung (2013) points out the impossibility of argument structure mismatches under sluicing, and proposes this, as well as revised case matching observations, as syntactic constraints on the identity condition.

Code switching is a phenomenon in which competent bilingual speakers actively switch between two or more languages within a single utterance. There is no unique syntax of code-switching: the same syntactic principles that govern any other language system should be active in such a language. But ellipsis processes are apparently constrained. Merchant (2015) notices that there is a Code Switching Ellipsis Generalization (CSEG): “All apparently cross-language ellipsis involves code switching at the ellipsis site into the language of the antecedent” (202).

Examples from German-English code switching under sluicing show that sluices without overt correlates (sprouts) defy this generalization. They match the case that the underlying German case-assigning head would assign to a remnant in a monolingual sluice (2). Further, code switched statements without ellipsis sites also show morphological case behavior expected of monolingual German utterances, as in (3). German drohen, ‘threaten’ assigns dative case to its argument, and eifersüchtig, ‘jealous’ idiosyncratically selects the preposition auf for its PP complement:

(2) Hans was jealous, aber ich weiss nicht auf wen₃₄ acc <er eifersüchtig ist>.
 ‘Hans was jealous, but I don’t know of who he was jealous.’

(3) Hans threatened SOMEONE, aber ich weiss nicht wem₃₄ dat er gedroht hat.
 ‘Hans threatened someone, but I don’t know who he threatened.’

But sluices with overt correlates (merger) DO NOT match the case that the German case-assigning head assigns to a remnant in a monolingual sluice (2). Further, code switched statements without ellipsis sites also show morphological case behavior expected of monolingual German utterances, as in (3). German drohen, ‘threaten’ assigns dative case to its argument, and eifersüchtig, ‘jealous’ idiosyncratically selects the preposition auf for its PP complement:

(4) Hans was jealous OF SOMEONE, aber ich weiss nicht von wem₃₄ dat <er eifersüchtig ist>.
 ‘Hans was jealous of someone, but I don’t know of who he was jealous.’

(5) Hans threatened SOMEONE, aber ich weiss nicht wen₃₄ acc <er gedroht hat>.
 ‘Hans threatened someone, but I don’t know who he threatened.’

This is a stark grammaticality judgement, and holds across speakers who also consider (1-3) grammatical. Gonzalés-Vilbazo & Ramos (GVR, 2014) support similar findings with experimental
data from Spanish–German code switching. They focus only on sluices involving merger, and like these, their data require a morphosyntactic identity posits code switching in the ellipsis site itself. They propose that some form of syntactic identity is necessary. The German–English code switching data above support GVR’s claim for a more nuanced identity requirement. Data from sprouted sluices show that the material in the ellipsis site must have privileged access to case-assigning predicates that are not identical (structurally or lexically) to the antecedent. But merger shows us that to some degree, the remnant is dependent on structural and lexical identity with the antecedent. Assuming that English assigns default accusative to non-subject DPs, the spurious accusative case-marked German remnant in (5) can be explained under identity with the structural case of the English correlate. As GVR suggest, this identity can be accomplished by assuming code switching in the ellipsis site. Thus, sprouted sluices differ from cases of merger only in virtue of the fact that they disobey the CSEG, and there is not another code switch in the ellipsis site.

The facts from sprouting and merger with code switching provide a crucial insight into what level of analysis sluicing is sensitive to. A monolingual sluice will either (a) always show consistent overt case marking (as in German), or (b) lack overt morphological case marking (like English). But this case of code switching involves one language that makes overt morphological case distinctions, and one that does not. I assume a Correlate Filter, which is an updated version of the original case matching constraint on sluicing. Such a constraint assumes an underlying syntax for the ellipsis site, and further, requires (6). Additionally, a small change to the CSEG must be made as well (7):

(6) The case or preposition assigning head in the ellipsis site is identical to the case assigner of the correlate.

(7) Updated Code Switching Ellipsis Generalization: All apparently cross-language ellipsis with overt correlates involves code switching at the ellipsis site into the language of the antecedent.

Restating this observation in such a way does not change the facts for monolingual sluices; sluices will still be governed by lexical idiosyncrasies of a predicate. But for code switched sluices, coupled with an updated CSEG, merger will induce a code switch in the ellipsis site in order to conform to the Correlate Filter, thus deriving the facts seen in (4-5). But where case and preposition licensing pattern with the language of the ellipsis site, because there is no correlate present, the Correlate Filter need not be invoked. No code switching in the ellipsis site must be assumed.

This analysis has the upshot of capturing the paradigm introduced by code-switched sluices. It also uncovers an inherent difference between sprouting and merger. With a new CSEG, code switching in the ellipsis site is only necessary for sluicing processes (and ellipsis types in general) that leave behind elements that are structurally identical to corresponding phrases in the antecedent. For sprouting and other ellipsis processes that do not depend on an overt correlate in the antecedent, and are thus not bound by the same case matching constraints, code switching is not necessary.